From 1 - 10 / 398
  • This is a compilation of all the bathymetry data that GA holds in its database for the area that covers the Diamantina Fracture Zone to the Naturaliste Plateau. This dataset consist of different 6X4 degrees tiles that are: Tiles SI48,SJ48,SK48,SL48, SI47,SJ47, SK47,SL47, SJ46,SK46,SL46, SK45 and SL45)

  • The Murray Canyons are a group of deeply-incised submarine canyons on a steep 400-km section of the continental slope off Kangaroo Island, South Australia. Some of the canyons are amongst the largest on Earth. The canyons, some 80 km long, descend from the shelf edge to abyssal plain 5200 m deep. Sprigg Canyon, the deepest and one of the largest, has walls 2 km high. The thalwegs of the larger canyons are concave in profile, steepest on the upper continental slope (15?-30?), with about 4?gradient on the mid slope, then level out on the lower slope to merge with the 1? continental rise. Between canyons, the continental slope is slightly convex to linear with a gradient of about 5?-6?. Canyon walls commonly slope at 15?-22?. The passive continental margin narrows to 65-km at the Murray Canyons and links the Bight and Otway Basins. WNW-trending Jurassic-Cretaceous rift structures control the irregular shape of the central canyons. At the western end, large box canyons 1 km deep are incised into thick sediments of the Ceduna Sub-basin. Formed by headscarp erosion, some of these canyons have coalesced by canyon capture. The upper parts of most canyons are cut into Cretaceous sediments and in some places are floored by basement rocks. Large holes, spaced about 5 km apart and up to several hundred metres deep, along the outlet channels of the larger and steeper canyons were probably gouged by turbidity currents resulting from major slope failures at the shelf edge. Quaternary turbidites were deposited on the abyssal plain more than 100 km from the foot of slope. Canyon down-cutting was episodic since the latest Cretaceous, with peak activity since the Oligocene due to strong glacioeustatic fluctations and cycles, with canyon development occurring during lowstands and early transgressions when sediment input at the shelf edge was usually highest. The timing of canyon development is linked to major unconformities within adjacent basins, with down-cutting events recorded or inferred during early Paleocene, Middle Eocene, Early Oligocene, Oligocene/Miocene transition (~24 Ma), mid Miocene (~14 Ma) and latest Miocene-Pleistocene. The early phases involved only siliciclastic sediments, while post-early Eocene canyon cutting was dominated by biogenic carbonates generated on the shelf and upper continental slope. The Murray River dumped its sediment load directly into Sprigg Canyon during extreme lowstands of the Late Pleistocene when the Lacepede Shelf was dry land.

  • Seagrass communities in the northwest of Torres Strait are known to disappear episodically over broad areas. Sediment mobility surveys were undertaken within two study areas during the monsoon and trade wind seasons, in the vicinity of Turnagain Island, to find out if the migration of bedforms could explain this disappearance. The two study areas covered sand bank and sand dune environments to compare and contrast their migration characteristics. Repeat multibeam sonar surveys were used to measure dune-crest migration during each season.

  • The release of fluid to the seabed from deeper sources is a process that can influence seabed geomorphology and associated habitats, with pockmarks a common indicator. In May 2012, Geoscience Australia led a multidisciplinary marine survey in Joseph Bonaparte Gulf, to facilitate an assessment of the potential for fluid leakage associated with geological storage of CO2 at depth within the Petrel Sub-basin. Multibeam bathymetry and backscatter mapping (652 km2), combined with acoustic sub-bottom profiling (655 line-km) and geomorphological and sediment characterisation of the seabed was undertaken. Seabed geomorphic environments identified from 2 m resolution bathymetry include carbonate banks and ridges, palaeochannels, pockmark fields and fields of low amplitude hummocks. This paper focuses on pockmarks as indicators of fluid seepage from the subsurface. Three principal pockmark morphologies (Type I, II and III) are present with their distribution non-random. Small unit (Type I) depressions occur on plains and in palaeochannels, but are most commonly within larger (Type II) composite pockmarks on plains. Type III pockmarks, intermediate in scale, are only present in palaeochannels. The timing of pockmark formation is constrained by radiocarbon dating to 14.5 cal ka BP, or later, when a rapid rise in sea-level would have flooded much of outer Joseph Bonaparte Gulf. Our data suggest the principal source of fluids to the seabed is from the breakdown of organic material deposited during the last glacial maxima lowstand of sea-level, and presently trapped beneath marine sediments. These results assist in ameliorating uncertainties associated with potential CO2 storage in this region.

  • This abstract contains and overview of the datasets acquired by the Australian Antarctic and Southern Ocean profiling Project in the Antarctic summers of 2000/01 and 2001/02.

  • This abstract presents an interpretation of the geology of the continental margin of EastAntarctica between Queen Mary and George V Lands. The data used in the interpretation were acquired under the Australian Antarctic and Southern Ocean Profiling Project.

  • This abstract outlines the interpretation of geophysical data acquired by the Australian Antarctic and Southern Ocean Profiling Project in the offshoree AAT, southwest of the Kerguelen Plateau.

  • This abstract contains a summary of the broad scientific results coming out of the interpretation of data acquired under the Australian Antarctic & Southern Ocean Profiling Project.

  • This abstract provides an interpretation of the margin structures and breakup processes in the separation of Elan Bank (Kerguelen Plateau) from Enderby Land, east Antarctica.